Leveraging functional annotations in genetic risk prediction for human complex diseases
نویسندگان
چکیده
Genetic risk prediction is an important goal in human genetics research and precision medicine. Accurate prediction models will have great impacts on both disease prevention and early treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome wide association studies (GWAS), genetic risk prediction accuracy remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes in the presence of linkage disequilibrium. In this paper, we introduce AnnoPred, a principled framework that leverages diverse types of genomic and epigenomic functional annotations in genetic risk prediction for complex diseases. AnnoPred is trained using GWAS summary statistics in a Bayesian framework in which we explicitly model various functional annotations and allow for linkage disequilibrium estimated from reference genotype data. Compared with state-of-the-art risk prediction methods, AnnoPred achieves consistently improved prediction accuracy in both extensive simulations and real data.
منابع مشابه
Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction
Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS) in the past decade, accuracy of geneti...
متن کاملIntegrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies.
Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSky...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملInvestigations on factors influencing HPO-based semantic similarity calculation
BACKGROUND Although disease diagnosis has greatly benefited from next generation sequencing technologies, it is still difficult to make the right diagnosis purely based on sequencing technologies for many diseases with complex phenotypes and high genetic heterogeneity. Recently, calculating Human Phenotype Ontology (HPO)-based phenotype semantic similarity has contributed a lot for completing d...
متن کاملSmoking Gun or Circumstantial Evidence? Comparison of Statistical Learning Methods using Functional Annotations for Prioritizing Risk Variants
Although technology has triumphed in facilitating routine genome sequencing, new challenges have been created for the data-analyst. Genome-scale surveys of human variation generate volumes of data that far exceed capabilities for laboratory characterization. By incorporating functional annotations as predictors, statistical learning has been widely investigated for prioritizing genetic variants...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017